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Abstract
Factor analysis was used to successfuly extract 3 factors that determine

consumers' choice of car. Practical issues related to the use of Factor Analysis were
satisfactorily resolved in this application.

1. INTRODUCTION

Factor Analysis is a statistical tool which reduces the numberofvariablesunder consideration to a
more manageable number. Through the factor analytic technique, the number of variables for further
researchcan be minimized while at the same time maximizing the amount of information in the analysis.

•

The essence of factor analysis is shown in Figure 1.1. Here there are fourteen (14) variables
VI,V2, ...,VI4 which "load" onfour unobservable commonfactors. Thevariables V3, V7, VI0 and V14
are grouped together, meaning that they are highly correlated with one another and constitute the first
factor. Similarly, variables V2, V5 and V13 define a secondseparate factor; variables V4 and V12define
a thirdfactor andvariables VI, V6, V8, V9and V11 contribute to formthe fourth factor. Therefore,each
subset ofvariables can be thought ofas reflecting a latent underlying dimension. So" instead of having
to deal with the fourteen variables separately, we now need to consider only the four factors as defined
in the figure.

•
Fourteen Correlated Var'iables
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• Fig. 1.1: Fourteen variables reduced to four factors
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The Basic Model

The basic common factor-analytic model is usually expressed as

·X =Lf +e

where

x = p-dimensional vector of observed responses,
x'= [XI ,x2 , ••. ,Xp ]

f = q-dimensional vector of unobservable variables called common factors, _

1'= [J;,!2, ... ,!q]
e = p-dimensional vector of unobservable variables called unique factors,

i= [e\,ev ... ,ep ]

L =pxq matrix of unknown constants called factor loadings

All AI2 Alq
A2I A22 A2q

L=

(1.1.1)

•

•

(1.1.1)

Therearep unique factors andit isgenerally assumed that theunique partofeachvariable isuncorrelated
with eachother or with their common part; that is

\f) 0 0

0 '112 0
E(ee') ='II=

0 0 'lip

and
Cov(e,f') =0

Themodel given by(1.1.1)along withthe imposed assumptions implies that thecovariance matrix of the
response vectorX denoted by ~ can be expressed as

1: =L<1lL'+\f

whereL and Y are as previously defined and

1

cl>21 1

<I> = cl>31 cl>32

cl> .q_1 1
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Theqxqsymmetric matrix <1> haselements 4l.~ i,j= 1,2, ...,qwhichgivethecovariances (correlations)
between the common factors. Note that since"each column of L may be scaled arbitrarily, we have
assumed, without lossofgenerality, that thecommon factors have unitvariances. Therefore thediagonal
elements of <1> have been replaced with ones. If we further assume that the factors themselves are

.uncorrelated, then

<1> = I.

and thus (1.1.2) becomes

~ =LL'+'I' (1.1.3)

Given a particular ~, certain conditions must be metfor the factorization in(1.1.3) to existandifit
• does,to beunique. Theissue ofidentifiability and uniqueness ofparameterestimates oftenposesdifficulty

inthecontext of thecommon factor analytic model. Thetotalnumber of parameters inneed ofestimation
is the number offactor loadings, namely pq. There are 1/2P(P+ 1) equations. Generally, the requirement
for identification is that the number of parameters be less than the number of equations, so that

pq+p<tp(p+I) or q<t(p-I)

Therefore, q should be fairly small compared to p. Unfortunately, this does not guarantee that a
solution will exist. '

•

It ishowever important to notethat inthecaseof exploratory factoranalysis, ifq > 1anda solution
exists it isnotgenerallyunique. Using (1.1.3), weseethatanyorthogonal rotation offactorsintherelevant
q-space will give anewsetoffactorswhich will also satisfytheconditions ofequation (1.1.3). Toillustrate,
let Tbe an orthogonal matrix of order (qxq). We now have

(LT)(LT)'= LIT' LI= LL' (l.I.4)

However, even though the loading in Land LT are different, their ability to generate the given
covariances in ~ is the same.

el

e2 (1.1.5)+ · .··
ep

or

=

The basic model given by (1.1.1) may be written alternatively as

Xl All Al2 Alq J..
x2 A21 A22 A2q h

•
q

XI =L Aljlj +el
j=l

(1.1.6)

A set of equations like those in(1.1.5) is called a factor pattern. For simplicity the factorpattern is
usually shown in tabular form in which only the factorcoefficients are listed. The pxq matrix of factor
loadings (wher~p <q) withthefactor designations as column is referred to as the patternmatrix. Weare
also interested in the correlation between the variables and the common factors. A matrix of such
correlations is called a factor structure matrix. Both structure and pattern are needed for a complete
solution. However, though ingeneral theelements ofastructure matrix aredifferent from thecoefficients
ofa pattern matrix, inthecaseofuncorrelated andstandardized factors, the two are identical-thefactor
loadings A.. referto the correlations between thejth factor I'. and the ith variable<X:.

I) Jj,

•



Though the common factor- analytic model hasbeendeveloped intermsofthe variance - covariance
matrix ofthe observed responses, the original variables are usually standardized so that the basicinputto
a common factoranalysis isthe correlation matrix. Denoting the correlation matrix by R, we canrewrite
(1.1.2) as

•

R = L<I>L'+'P (1.1.7)

(1.1.8)

wherethe qxq symmetric matrix <I> contains the correlation between the common factors. The product
matrix L<I>L' is called the common factor correlation matrix. Equation (1, .1.5) could also be written as
equivalent to a linear factor model in (1.1.8)

XI = AIlI. + AIJ.z+···+Alq/q +el
X2 = A211. +A~+... +A2q/q + e2 •

Note that each equation in (1.1.8) partitions the variable X; into two uncorrelated parts

X; =c; +e; (1.1.9)

~here Cj=A;ft+A,h+...+~;J;,is tha~ pa~ of eachvariable that is common to the other p-l variables,
ande j IS that part of eachvana~fe that IS uruque.

Because the common and unique parts of a variable are assumed uncorrelated and because the\
common factors haveunit variance, we can partition the variance'ofX; into

var(X;) = var(c;) + varte.) (1.1.10) •
wherevar(c) andthe var(e) represent the common variance and the unique variance ofX;, respectively.
The common variance ofa variable is alsocalled the communality of the variable. By communality ofa
variable is meant that portion ofa variable's totalvariance that is accounted for bythe common factors.
Letting h/ to represent the communality of the ith variable, we can write

Var(XJ = h/ + 'P; (1.1.11)

wherevar(e;) = 'P from the basic model given in (1.1.1). Note that
q

Var(c.) ="'" A... 2 = h?, L.J IJ I

j=1
(1.1.12)

•
issimply thesumofthesquared elements intheithrowofL. Theunique variance ofavariable, 'II, iscalled
theuniqueness of the variable andreflects the extent to which the common factors fail to account'forthe
variance of the variable - it is the portion left unexplained by the common factors.

The total contribution of factorf to the total variance of the entire set of variables is given by the
eigenvalues of the factor1;, which ca~ be obtained.by computing ,

p

j =LA/
;=) (1.1.13)

Vj =Aj'A j

..
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• whereAj denotes thejth column ofL. Equation (1.1.13) isnothing morethanthesquared factorloadings,,.p A
V

forj=I,2, ...,q. Thetotal contribution of all the common factors to the total variance among all
~=~anables is the total communality, defined as

q

V =L~'
}=I

(1.1.14)

(1.1.15)

Thus, the total variance can be written as
Total Variance =tr(~)

Thevariance among all thevariables that isaccounted for bya factor}; as a percentage ofthat accounted
for by all the factors is given by J

V
V.

=_J
c V

•
q p

=LV} + L'¥I
}=I 1=1
P q P

=LLA/ +L'¥I
1=1 }=I' 1=1

(1.1.16)

Common Factor Analysis versus Principal Component Analysis

Thepresent studyutilizes a model that represents a largeset of observed variables bysomesmaller
set thatstill preserves theessential information. Horst(1965) andvande Geer(1971)discussed principal
components analysis (peA) as one method of dealing withthisproblem. Principal components analysis

• is the most commonly employed methods of a wide class of data reduction procedure typically called
components analysis. A second class ofprocedure called factoranalysis hasbeenemployed for the same
problem. In principal components analysis:

1)P linear compounds are needed to account for the total variance ofp variables.

2) The sumof the variances ofallp principal components is equal to the sumofthe variances of the
original variables.

In principal components analysis, the unobservable factors are expressed as functions of the
. observable variables as in (1.2.1)

• PC(I) =W(I)IXI + W(I)2X2 + +W(I)pXp

PC(2) =W(2)IXI + W(2)2 X2 + +W(2)pXp (1.2.1)

•

In principal components analysis, the total variation contained· inthe set of variables is considered.
. In contrast, withthe common factor-analytic model interest centers on that partof the total variance that
: isshared bythevariables. Thecommon factor-analytic model assumes thatavariable consists ofcommon
arid unique parts. Thecommon partofa variable isthatpart ofthevariable's variation that is shared with
the other variables, whereas the unique part of a variable is that part of the variable's variation that is
specific, to that variable alone. Thus, one important distinction between principal components and
common factoranalysis comes from the amount of variance analyzed. In factoranalysis a formal model



(1.2.2)
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isspecified describing each original variable interms ofa linear function ofa small amount ofunobservable
common factors and a single latent unique factor. Its algebraic representation is as follows:

X J =VJ(J)C~I) +vJ(2)C~2)+",+vl(m)C~m) +eJ

X 2 = V2(J)C~J) +V2(2)C~2) +",+V2(m)C~m) +e2

Here, there arem (<p) common factors, denoted byCF(j)' i = 1,2,..., m wherethe Vj(il'} = 1,2, ...,
m,give theweight of the ith common factorassociated with the}thobservable variable, andthee,} = 1,
2, ...,p, are the unique factor effects. J .

In contrasting equations (1.2.1) and (1.2.2), we find that in one case the inherently unobservable
factor is a function of its indicators (principal components analysis), whereas in the other case, the
indicators are a function of the unobservables (common factor analysis). In general expressing an
unobservable as a function of its indicators is notequivalent to expressing the indicators as a function of
the unobservable. Empirically, the parameter' effects will be different since in principal components
analysis there is no error term (see eq. 1.2.1). Conceptually, the absence of error term implies that the
observable variables aremeasured without errorandthat theunobservable latent principal component is
a perfect linear combination of its measures.

2 .. APPLICATION

•

•

Fig. 2.1 presents a schematic representation ofthe factor analysis results of2500 responses gathered
in Metro Manila, i.e., Manila, Makati, Pasay, Paranaque, Caloocan and Quezon City. Of the 2500 •
respondents, 52.8percent weremale respondents, 47.1 percent werefemale respondents and .1 percent
represented the third sex. Also out of 2500respondents, 51.9percent werebelow25 years of age, 35.1
percent werebetween 25 to 45 years old and 13 percent were above 45 yearsold.

Theanalysis considered consumers' ratings oftheimportance of 14variables inchoosing a car. The
14variables werepatterned afterKachigan's (1982) study which are: V1-low cost repairs; V2- variety
of colors; V3 - roomy interior; V4 - good gas mileage; V5 - good handling; V6 - modem looking; V7­
high resale value; V8- comfortable; V9-large engine; VIO - sleek appearance; VII - easyto drive; VI2
- eyecatching; V13 -large trunk space; VI4 - easy to park.

The 14variables canbe characterized by threelatent underlying dimensions relation to (1) easeof
handling, (2) stylishness and (3) cost efficiency. Thus, instead of having to understand 14variables, we
have simplified matters to the extent thatnowonly threefactors need beconsidered incharacterizing the
underlying structure of the car data. .

Table 1shows theinitial statistics foreach factor. Thetotalvariance explained byeachfactorislisted
under the column labeled eigenvalue. Table 1 shows that almost 54 percent of the total variance is
attributable to thefirst threefactors. Theremaining eleven factors togetheraccount foronly 46.3 percent.
Thus, a model with threefactors may be adequate to represent the data.

Fig. 2.2 is a plot of the totalvariance associated witheachfactor. Th~ plot shows a distinct break
between thesteepslope ofthe large factors and thegradual trailing offtherestofthefactors. Thegradual "
trailing off is called scree, (Catell, 1965) because it resembles the rubble that forms at the foot of a
mountain. Experimental evidence indicates that the screebegins at the Kth factor, whereK is the true

•
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number offactors. Fromthe screeplot, it again appears that a three-factor model should besufficient for
the car data.

Table 2 shows the factor loadings before rotation of the axes. Each row of Table2 contains the
coefficients usedto express a standardized variable intermsofthe factors. Thesecoefficients are called
factor loadings since they indicate how much weight is assigned to each factor. Factors with large
coefficients (inabsolute value) for a variable areclosely related to the variable. For example, Factor I is
the factorwith the largest loading for the V8 (Comfortable) variable. '

When theestimated factors areuncorrelated witheachother(orthogonal) thefactorloadings arealso
the correlations between the factors and the variables. Thus, the correlation betweenV7 (High resale
value) andFactor I is .60124. Similarly, thereisaverysmall correlation (-.00410) between V7and Factor

• 2. Theunrotated factormatrix isdifficult to interpret. Table 2 shows that the car dataare heavily loaded
on factor I thanon factors 2 and3. The loadings on factors 2 and3 are mostly bipolar. Variables 3,4,
5,6,7,8, II, 12, 13 and 14load highly onfactor I~ while variables 2 and9 loadhighly on factor2. Finally,
variable I load highly on factor3. Variables loading highly on a factor are underlined.

Tojudgehowwell thethreefactormodel describes theoriginal variables, theproportion ofvariances
. explained by the 3 factor model wascomputed. Since the factors are uncorrelated, the communality of

thevariable which istheproportion ofvariance explained bythecommon factors' isjust thesumofvariance
explained by eachfactors.

•

•
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Fig~ 2.1: Schematic represenuuion 0/14 variables reduced 10 Ollly three/actors
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•. Considerforexample variable 7. Factor I accounts for36.15percent ofthevariance forthisvariable.
Thisisobtainedbysquaring the correlation coefficient forFactor I and V7 (.60124)2. Similarly, Factor
2 explains .001681 percent of thevariance, andFactor3 accounts for 2.55 percent ofthe variance. The
totalpercentageofvariance inV7accounted bythisthreefactormodel istherefore [(.60124)2+(.15964)2}
or (36.15% + .00168% + 2.55%)= 38.7% • (see Table 4). '

Table 3 shows the factor loadings after a varimax rotation. The rotation phaseoffactor analysis
attempts to transform the initial matrix intoonethat iseasierto interpret. Also, rotation redistributes the
explained variance for the individual factors. Eachvariable's highest (absolute) loading is underlined in
the table. Interpretations will be based on those variables loading highest on a given factor. It is to be
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Table 1

Initial Factors

Initial Statistics
Variable Communality * Factor Eigenvalue Pet. o(Var. Cum.

Pet.
vr 1.0000 • 1 4.73044 33.8 33.8
V2 1.0000 • 2 i.75275 12.8 46.3
V3 1.0000 • 3 1.03479 7.4 53.7
V4 1.0000 • 4 0.92694 6.6 60.3
VS 1.0000 • 5 0.81298 5.8 66.1
V6 1.0000 • 6 0.72966 5.2 71.3
V7 1.0000 • 7 0.67399 4.8 76.2 •
V8 1.0000 • 8 0.59669 4.3 80.4
V9 1".0000 • 9 0.55710 4.0 84.4
VI0 1.0000 • 10 0.51312 3.7 88.1
V11 1.0000 • 11 0.46988 3.4 91.4
V12 1.0000 • 12 0.43114 3.1 94.5
V13 1.0000 • 13 0.40958 2.9 97.4
V14 1.0000 • 14 0.36095 2.6 100.0
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Table 2

Factor Matrix

FACTORl FACTOR 2 FACTOR 3
VI . 0.46361 -0.14777 0.58575
V2 0.40162 0.52629 0.20390
V3 0;60465 -0.01690 . 0.19097

V4 0.63323 -0.50960 0.05694 .

V5 0.66208 -0.34612 -0.11933
V6 0.63782 . 0.15374 -0.41734
V7 0.60124 -0.00410 0.15964

• V8 0.63958 -0.46851 -0.17715
'-V9 0.48765 0.49049 0.05649

VI0 0.60004 0.34856 -0.28143
V11 0.61746 -0.44052 0.13655
V12 0.56732 0.40756 -0.36313
V13 0.59930 0.32802 0.31758
V14 0.55837 0.03429 0.17705

Table 3
Factor Loading After Rotation

Factor Matrix

•

•

VI
V2
V3
V4
V5
V6
V7
V8
V9
VIO
VB
V12
V13
V14

FACTORl
0.30165

-0.16036
0.37255
0.77702
0.70945
0.38386
0.36685
0.79515

-0.05007
0.19098
0.75254
0.14175
0.09284
0.30740

FACTOR 2
-0.18157
0.42462
0.20137

-0.01369
0.20463
0.67422
0.22551
0.14954
0.53258
0.69763
0.13194
0.76387
0.34093
0.21666

FACTOR 3
0.67522
0.52329
0.47224
0.24489
0.16490
0.05206
0.44896
0.07298
0.44207
0.19384
0.10449
0.12740
0.66540
0.45041

..

notedthatvariableswithhigher loadings aretobeconsidered ashavinggreaterinfluence. Also, theloading
of eachfactor and the correlation of the variables with the factors is known as factorial validity of the
variables. Factorial validity is essentially the correlation of the variables withwhatever is common to a
group of variables.

Table 3 shows that the variables loading highly on Factor 1 are V4 (good gas mileage), V5 (good
handling), V8 (comfortable) and VII (easy to drive). Thus, factor 1 might be interpreted as something
like easeof handling.

Thesecond factor loadshighly on V6 (modem looking), V9(large engine), V10(sleek appearance)
and V12 (eyecatching). These describe the dimension of stylishness.



Finally, factor3 isloading highly onV1(lowcostrepairs), V2(variety ofcolors), V3(roomyinterior),
V7(high resale value), VB (largetrunkspace) andV14(easyto park). Thelastfactor isassociated with
cost efficiency. Thus, the car data maybe fairly characterized andattributed to these three factors: ease
of handling, stylishness and cost efficiency. Table 4 reveals the final three selected factors.

Table4 showsthecommunalities forthevariables togetherwiththepercentage ofvariance accounted
for byeachof the retained factors. Recall that inTable 1,about53.7%of the total variance is accounted
for by the first three eigenvalues. Again, it appears safeto conclude that in termsofearianceexplained,
three factors sufficiently capture the variance structureof the original data.

Factor Scores

Table 4
Selected Factors

Final Statistics
Variable Communality * Factor Eigenvalue Pet. of Var. Cum. Pet.
VI 0.57988 • I 4.73044 33.8 33.8
V2 0.47985 • 2 1.75275 12.8 46.3
V3 0.40236 • 3 1.03479 7.4 53.7
V4 0.66392 •
V5 0.57239 •
V6 0.60463 •
V7 0.38699 •
V8 0.65995 •
V9 0.48157 •
VIO 0.56074 •
VB 0.59396 •
VI2 0.61982 •
Vl3 0.56762 •
VI4 0.34430 •

Since oneof the goalsinfactoranalysis is to reduce a largenumber of variables to a smaller number
offactors, it isoftendesirable to estimate factorscoresforeachcase. Recall that a factorcanbeestimated
as a linear combination of the original variables. Therefore, for case K, the score for the jth factor is
estimated as

A Pr. =~W':XikJ. ~ ]I

i=l .

whereXik is the standardized value of the ith variable for casek, and W.. is the factor scorecoefficient for
jth factor and the ith variable. Except for principal components analysis, exact factor scores cannot be
obtained. Estimates are obtained instead.

•

•

•

•
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3. SOME PRACTICAL ISSUES

Issuesthat surface inreal-life applications ofFactorAnalysis are: (1) Choosing theappropriatedata
(variable's) as inputto theFactor Analysis module; (2) Interpreting the underlying constructor dimension
(factor); and (3) What to do with cases that have missing values.

Choosing the appropriated data (variables) as input to a Factor Analysis
module

One ofthe criteria in choosing variables for the factor analysis model is that the variables must be
correlated with each other. If the correlations betweenvariables are small, then it is possible that the
variables do not share common factors. In this case, the use of factor analysis model is inappropriate.
Bartlett's test of Sphericity can be used to test the hypothesis that the correlation matrix is an identity
matrix(i.e., alldiagonal terms are 1 and all off-diagonal terms are 0) or in other words, the variables are
uncorrelated. The test requires that the data be a sample from a multivariate normal population. If the
test statistic for sphericity (based on a chi-square transformation of the determinant of the correlation
matrix) islargeandthecorresponding significance level issmall, thenitappearsunlikely that thepopulation
correlation matrix is an identity, This resultwouldbe appropriate for a factor analysis. However, if the
hypothesis that the population correlation matrix is an identity cannot be rejected because the observe
significance level is large, thenone should reconsider the use of a factor model. Anotherindicator ofthe
strength of relationships among the variables is the Kaiser-Meyer-Olkin (KMO) measure of sampling
adequacy where the magnitudes of the correlation coefficients are beingcompared with the magnitudes
of the partial correlation coefficients. It is computed as

~ r.,.,.2
KMO = L..Ji"#.j IJ

. L ~- 2 L ~- 2LIT·· + u..I ..
. i"#.j IJ i"#.j IJ

Table 5

KMO and Bartlett's Test Results

Kaiser-Meyer-Olkin (KMO Measure of Sampling Adequacy = 0.8742

•
Bartlett's Test of Sphericity = 9437.0868 Significance = 0.0000

..

where rIj is the simple correlation coefficient betweenvariables ; andj and a
f

is the partial correlation
coefficient betweenvariables; andj. If the sumofthe squared partial correlition coefficients between
all pairsofcoefficients, the KMO measure is closeto 1. Small valuesfor theKMO measure indicate that
a factor analysis of the variables may not be a good idea, since correlations between pairs of variables
cannotbeexplained bythe othervariables. Kaiser (1974) characterizes measures inthe. 90' s marvelous,
in the .80's as meritorious, in the. 70's as average, in the .60's as mediocre, in the .50's as miserabie, and
below .50 as unacceptable. Table 5 showsthe KMO index ofsampling adequacy and the Bartlett's test
for th car data in this study.

Table 5 reveals that the overall KMO is closeto 0..9 and the Bartlett's test is highly significant, so
it is safe to say that factor analysis is appropriatefor the car data. .
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I

A problem in interpreting the factors in deciding when a borderline loading should be considered '
significant or salient. Using the salient loadings to cluster the variables may aid the interpretation.
"Salient" hasbeenusedonanintuitive basis to identify high loading. Moretechnically, a salient loading
isonethat is sufficiently high to assume that a relationship exists between the variable andthe factor. In
addition, it usually means that the relationship is high enough so that the variable can aid in interpreting
the factor and vice versa. In some situations however, factors may occur that present problems for
interpretation. Suchproblems arise when the variables are not sufficiently understood, whenthe factor
includes such a wide range ofvariables thattheycannot be readily integrated, or whenthefactorispoorly
defined. Poorlydefined factors aregenerally thosethat do not have several salient loadings byvariables
that loadon specific factors. Without a unique set of variables loading the factor, there is no realbasis
for interpreting the factor. Thereis, of coursenoreason to interpret all factors. It therefore follows that •
only factors well defined by interpretable variables are being examined.

Cases that have miss~gvalues

In caseswheresome individuals may have scores on all variables except one or two, the following
may be suggested. the missing element canbe replaced bycalculating the mean for thevariable from the
individuals whodo have scores on it. Themean isthenusedas the best estimate of the missing element.
Oranother individual canbeselected at random andhisscoreonthevariables isusedto replace themissing
element.' The latter procedure will, on the average, leave both the mean and variance unaffected. The
former: procedure leaves only the meanunaffected. Both procedures reduce correlations with other
variables.

Tomaintain thevariable's correlationswith theothervariables, a multiple regression analysis isused.
The other variables are used to predict the variable with a missing element. The regression analysis is •
computed only withthoseindividuals whohave scoreson all thevariables to be usedintheanalysis. The
regression weights are then applied to the known scores to estimate the missing score. A regression
analysis is computed for every variable that has one or moremissing scores.

The regression procedure hasbeenfound moreeffective for estimating whatthe correlation matrix
would have beenifall scorehadbeenavailable (Timm, -1970). Theotherprocedures against which itwas
compared included dropping the individuals who hada missing score, replacing the missing scorewith
the mean, and'aprocedure based on principal components. Theregression procedure wasbestwhether
1% or 20% of the data were missing (Gorsuch, 1983).

Computer programs areavailable thatcalculate each correlationcoefficient from only theindividuals
whohave the necessary scores. Theresulting correlation matrices should be factored only if the number
ofindividuals is quitesimilar for all elements. If the number ofindividuals varies widely form element to
element, thecoefficients may besufficiently incompatible to prevent a factoranalysis ordistorttheresults.

··'0 : •• _.,,_ •••••.,
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