The Philippine Statistician
1992, Vol. 41,
Pages 69-81- -

FACTOR ANALYSIS: AN ANALYSIS OF VARIABLE
INTERDEPENDENCE

by

Violeta C. Menil
De La Salle University

Abstract
Factor analysis was used to successfuly extract 3 factors that determine
consumers' choice of car. Practical issues related to the use of Factor Analysis were
satisfactorily resolved in this application.

1. INTRODUCTION

Factor Analysis is a statistical tool which reduces the number of variables under consideration to a
more manageable number. Through the factor analytic technique, the number of variables for further
research can be minimized while at the same time maximizing the amount of information in the analysis.

The essence of factor analysis is shown in Figure 1.1. Here there are fourteen (14) variables
V1,V2,...,V14 which “load” on four unobservable common factors. The variables V3, V7, V10and V14
are grouped together, meaning that they are highly correlated with one another and constitute the first
factor. Similarly, variables V2, V5 and V13 define a second separate factor; variables V4 and V.12 define
athird factor and variables V1, V6, V8, V9 and V11 contribute to form the fourth factor. Therefore, each
subset of variables can be thought of as reflecting a latent underlying dimension. So, instead of having
to deal with the fourteen variables separately, we now need to consider only the four factors as defined
in the figure.

Factor 1 Factor 2
V3 v2
V7 V5
vio Vi3
Vi4
Vii

Fig. 1.1: Fourteen variables reduced to four factors



The Basic Model

The basic common factor-analytic model is usually expressed as
' X=1If+e | - (1.1.1)

where

X = p-dimensional vector of observed responses,
x'= [x,,xz,...,x,,]

J = g-dimensional vector of unobservable variables called common factors,
L'=[foforn )

e = p-dimensional vector of unobservable variables called unique factors,
e'= [el,ez,...,ep]

L = pxq matrix of unknown constants called factor loadings
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There are p unique factors and it is generally assumed that the unique part of each variable is uncorrelated
with each other or with their common part; that is

¥ 0 0
0 Y, 0
E(ee')=¥ = .
0 O ¥,
and
Cov(e,f')=0

The model given by (1.1.1) along with the imposed assumptions implies that the covariance matrix of the
response vector X denoted by Z can be expressed as

whefe L and ¥ are as previously defined and
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The gxq symmetric matrix & has elements¢,,i,j=1,2,. .., g which give the covariances (correlations)
between the common factors. Note that since Yeach column of L may be scaled arbitrarily, we have
assumed, without loss of generality, that the common factors have unit variances. Therefore the diagonal
elements of ® have been replaced with ones. If we further assume that the factors themselves are

_uncorrelated, then

, o=1I
and thus (1.1.2) becomes
‘ =LL"+¥ (1.1.3)

Givena particular X, certain conditions must be met for the factorization in (1.1.3) to exist and if it
does, tobe unique. Theissue of ldentxﬂabxllty and uniqueness of parameter estimates often poses dlﬂ'lculty
in the context of the common factor analytic model. The total number of parameters in need of estimation
is the number of factor loadings, namely pq. There are !/ ,p(p+1) equations. Generally, the requirement
for identification is that the number of parameters be less than the number of equations, so that

pg+p<3:p(p+1) or g<3(p-1)

Therefore, ¢q #hould be fairly small compared to p. Unfortunately, this does not guarantee that a
solution will exist.

It is however important to note that in the case of exploratory factor analysis, if > 1 and a solution
existsitis not generally unique. Using (1.1.3), we see that any orthogonal rotation of factors in the relevant
g-space will give a new set of factors which will also satisfy the conditions of equation(1.1.3). Toillustrate,
let T be an orthogonal matrix of order (gxq). We now have

(LT)(LT)'= LTT'L'= LL' (1.14)

However, even though the loading in L and LT are different, their ability to generate the given
covariances in X is the same.

The basic model given by (1.1.1) may be written alternatively as

X Ay Ay oo )"qufl €
‘xz Ay Ay oo A'2.1 L2 ) (1.1.5)

P L;"pl A'1!’2 A’M_fq €
or i

. .
X =247, +e (1.1.6)
J=1

A set of equations like those in (1.1.5) is called a factor pattern. For simplicity the factor pattern is
usually shown in tabular form in which only the factor coefficients are listed. The pxq matrix of factor
loadings (where p < g) with the factor designations as column is referred to as the pattern matrix. We are
also interested in the correlation between the variables and the common factors. A matrix of such
correlations is called a factor structure matrix. Both structure and pattern are needed for a complete
solution. However, though in general the elements of a structure matrix are different from the coefficients
of a pattern matrix, in the case of uncorrelated and standardized factors, the two are identical - the factor
loadings k refer to the correlations between the jth factor Jf;and the ith variable X



Though the common factor- analytic model has been developed interms of the variance - covariance
matrix of the observed responses, the original variables are usually standardized so that the basici input to
a common factor analysis is the correlation matrix. Denoting the correlation matrix by R, we canrewrite
(1.1.2) as

R=LOL'+¥ : (117

where the gxg symmetric matrix & contains the correlation between the common factors. The product
matrix LOL' is called the common factor correlation matrix. Equation (l. 1.5) could also be written as
equivalent to a linear factor model in (1.1.8)

X = l,,f+k,,f2+ +k,qf+el
X, =AM ff + Aot A, [, e

(1.1.8)
Ay Hhpfot 0 [ te,
Note that each equation in (1.1.8) partitions the variable X, into two uncorrelated parts
X, =c te (1.1.9)

where ¢=A f,+A_f+. A, Jis that part of each variable that is common to the other p-1 variables,
and e, is that part of each variable that is unique.

Because the common and unique parts of a variable are assumed uncorrelated and because the_
common factors have unit variance, we can partition the variance-of X, into

var(X;) = var(c,) + var(e, ) . (1.1.10)

where var(c) and the var(e) represent the common variance and the unique variance of X, respectively.
The common variance of a variable is also called the communahty of the variable. By communallty ofa
variable is meant that portion of a variable’s total variance that is accounted for by the common factors.
Letting h? to represent the communality of the ith variable, we can write

Var(X,)=h’+¥, (1.1.11)

where var(e)) = ¥ from the basic model given in (1.1.1). Note that

Var(c,.)=ij,1,.j’ =h’ (1.1.12)

is simply the sum of the squared elementsin theith row of L. The unique variance ofa variable, P, i is called
the umqueness of the variable and reflects the extent to which the common factors fail to account for the
* variance of the vanable it is the portion left unexplained by the common factors.

The total contribution of factor f) to the total variance of the entire set of vanables is given by the
eigenvalues of the factor J;» which can be obtained. by computmg

Zlu
=3 (1.1.13)
V, Y



where 7\._] denotes the jth column of L. Equatnon (1.1.13) is nothing more than the squared factor loadings,
%: A, for J=12,..9. The total contribution of all the common factors to the total variance among all
the vanables is the total communality, defined as

V=3V, (1.1.14)

The variance among all the variables that is accounted for by a factor f; as a percentage of that accounted
for by all the factors is given by

Vj
Vc=7 (1.1.15)

Thus, the total variance can be written as
Total Variance = tr(Z)
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Common Factor Analysis versus Principal Component Analysis

The present study utilizes a model that represents a large set of observed variables by some smaller
set that still preserves the essential information. Horst (1965) and van de Geer (1971) discussed principal
components analysis (PCA) as one method of dealing with this problem. Principal components analysis
is the most commonly employed methods of a wide class of data reduction procedure typically called
components analysis. A second class of procedure called factor analysis has been employed for the same
problem. In principal components analysis:

1) p linear compounds are needed to account for the total variance of p variables.

2) The sum of the variances of all p principal components is equal to the sum of the variances of the
original variables.

In principal components analysis, the unobservable factors are expressed as functions of the
. observable variables as in (1.2.1)

PC(,) = WX, + w(,)2X2+---+w(,)PXP

PCpy = WonX) + W Xo - +Wy), X, 1.2.1)

PC(M) Wim ),X +w(m)2X 4. +w(m)po

In principal components analysis, the total variation contained in the set of variables is considered.

- In contrast, with the common factor-analytic model interest centers on that part of the total variance that
is shared by the variables. The common factor-analytic model assumes that a variable consists of common
“and unique parts. The common part of a variable is that part of the variable’s variation that is shared with
the other variables, whereas the unique part of a variable is that part of the variable’s variation that is
specific, to that variable alone. Thus, one important distinction between principal components and
common factor analysis comes from the amount of variance analyzed. In factor analysis a formal model
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is specified describing each original variable in terms of a linear function of a small amount of unobservable
common factors and a single latent unique factor. Its algebraic representation is as follows:

X, =v,CFy) + l(z)CF(z)+ AV C iy €,

X, = vz(,)CF(,) +v2(2)CF(2) +.. +v2(,,,)CF(,,,) +e, (122)

X, = vp(,)CF(,) +vp(2)CE2) +...+V CF(,,,) +e,

p(m)

Here, there are m (<p) common factors, denoted by CF ., i=1,2,.., m where the v, j
m, give the weight of the ith common factor associated with the jth observable variable, anci the e, ] = 1
2, ..., p, are the unique factor effects.

In contrasting equations (1.2.1) and (1.2.2), we find that in one case the inherently unobservable
factor is a function of its indicators (principal components analysis), whereas in the other case, the
indicators are a function of the unobservables (common factor analysis). In general expressing an
- unobservable as a function of its indicators is not equivalent to expressing the indicators as a function of”
the unobservable. Empirically, the parameter’ effects will be different since in principal components
analysis there is no error term (see eq. 1.2.1). Conceptually, the absence of error term implies that the
observable variables are measured without error and that the unobservable latent principal component is
a perfect linear combination of its measures.

2. APPLICATION

Fig. 2.1 presents a schematic representation of the factor analysis results of 2500 responses gathered
in Metro Manila, i.e., Manila, Makati, Pasay, Paranaque, Caloocan and Quezon City. Of the 2500
respondents, 52.8 percent were male respondents, 47.1 percent were female respondents and .1 percent
represented the third sex. Also out of 2500 respondents, 51.9 percent were below 25 years of age, 35.1
percent were between 25 to 45 years old and 13 percent were above 45 years old.

The analysis considered consumers’ ratings of the importance of 14 variables in choosing a car. The
14 variables were patterned after Kachigan’s (1982) study which are: V1 - low cost repairs; V2 - variety
of colors; V3 - roomy interior; V4 - good gas mileage; V5 - good handling; V6 - modern looking; V7 -
high resale value; V8 - comfortable; V9 - large engine; V10 - sleek appearance; V11 - easy to drive; V12
- eye catching; V13 - large trunk space; V14 - easy to park.

\

The 14 variables can be characterized by three latent underlying dimensions relation to (1) ease of
handling, (2) stylishness and (3) cost efficiency. Thus, instead of having to understand 14 variables, we
have simplified matters to the extent that now only three factors need be considered in characterizing the
underlying structure of the car data.

Table 1 shows theinitial statistics for each factor. The total variance explained by each factor is listed
under the column labeled eigenvalue. Table 1 shows that almost 54 percent of the total variance is
attributable to the first three factors. The remaining eleven factors together account for only 46.3 percent.
Thus, a model with three factors may be adequate to represent the data.

Fig. 2.2 is a plot of the total variance associated with each factér. The plot shows a distinct break
~ between the steep slope of the large factors and the gradual trailing off the rest of the factors. The gradual _
trailing off is called scree, (Catell, 1965) because it resembles the rubble that forms at the foot of a
mountain. Experimental evidence indicates that the scree begins at the Kth factor, where K is the true
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number of factors. From the scree plot, it again appears that a three-factor model should be sufficient for
the car data.

Table 2 shows the factor loadings before rotation of the axes. Each row of Table 2 contains the
coefficients used to express a standardized variable in terms of the factors. These coefficients are called
factor loadings since they indicate how much weight is assigned to each factor. Factors with large
coefficients (in absolute value) for a variable are closely related to the variable. For example, Factor 1 is
the factor with the largest loading for the V8 (Comfortable) variable. -

When the estimated factors are uncorrelated with each other (orthogonal) the factor loadings are also
the correlations between the factors and the variables. Thus, the correlation between V7 (High resale
value) and Factor 1is .60124. Similarly, thereis a very small correlation (-.00410) between V7 and Factor

2. The unrotated factor matrix is difficult to interpret. Table 2 shows that the car data are heavily loaded

on factor 1 than on factors 2 and 3. The loadings on factors 2 and 3 are mostly bipolar. Variables 3, 4,

~5,6,7,8,11, 12, 13 and 14 load highly on factor 1; while variables 2 and 9 load highly on factor2. Finally,

variable 1 load highly on factor 3. Variables loading highly on a factor are underlined.

Tojudge how well the three factor model describes the original variables, the proportion of variances

~ explained by the 3 factor model was computed. Since the factors are uncorrelated, the communality of

the variable which is the proportion of variance explained by the common factorsis just the sum of variance

explained by each factors.

Fig. 2.1: Schematic representation of 14 variables redisced to only three factors

_CpnsiQer forexample variable 7. Factor 1 accounts for36.15 percent of the variance for this variable.
This is obtained by squaring the correlation coefficient for Factor 1 and V7 (.60124)*. Similarly, Factor
2 explains .001681 percent of the variance, and Factor 3 acdounts for 2.55 percent of the variance. The

total percentage of variancein V7 accounted by this three factbr model istherefore [(.60124)2+(.15964)?}
or (36.15% + .00168% + 2.55%) = 38.7% * (see Table 4). ‘ '

Table 3 shows the factor loadings after a varimax rofation. The rotation phase of factor analysis
attempts to transform the initial matrix into one that is easier to interpret. Also, rotation redistributes the
explained variance for the individual factors. Each variable’s highest (absolute) loading is underlined in
the table. Interpretations will be based on those variables loading highest on a given factor. It is to be
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Table 1
Initial Factors
Initial Statistics ,
Variable Communality LA Factor Eigenvalue Pct. of Var. Cum.
Pct. ' . .
vr 1.0000 * 1 473044 33.8 338
V2 1.0000 . 2 1.75275 12.8 46.3
V3 1.0000 * 3 1.03479 74 53.7
V4 1.0000 * 4 - 0.92694 6.6 60.3
A\ 1.0000 * 5 0.81298 5.8 66.1
Vé 1.0000 * 6 0.72966 - 5.2 71.3
v7 - ' 1.0000 * 7 0.67399 43 76.2
V8 1.0000 * 8 0.59669 43 80.4
V9 : 1.0000 * 9 0.55710 40 84.4
V10 1.0000 . 10 0.51312 3.7 88.1
Vil » 1.0000 * 11 : 0.46988 34 91.4
vi2 1.0000 * 12 0.43114 3.1 94.5
V13 1.0000 * 13 0.40958 29 97.4
Vi4 1.0000 * 14 0.36095 26 100.0
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Table 2

Factor Matrix

’ : : FACTOR1 FACTOR2 FACTOR3

A4 046361 - -0.14777 0.58575
V2 " 0.40162 0.52629 0.20390

V3 0.60465 . -0.01690 *0.19097

V4 : 0.63323 -0.50960 0.05694 -

V5 0.66208 0.34612 0.11933

\Y/3 0.63782 0.15374 0.41734

V7 0.60124 -0.00410 0.15964

® : Vs . 0.63958 -0.46851 0.17715
V9 0.48765 0.49049 0.05649

V10 ~0.60004 0.34856 -0.28143

Vil 0.61746 -0.44052 0.13655

VI2- 0.56732 0.40756 0.36313

Vi3 ©0.59930 0.32802 0.31758

V14 0.55837 0.03429 0.17705

Table 3

Factor Loading After Rotation

Factor Matrix
: _ FACTOR 1 FACTOR 2 FACTOR 3

e ‘ \| 0.30165 -0.18157 0.67522
. ' V2 -0.16036 0.42462 0.52329
V3 0.37255 0.20137 0.47224

V4 0.77702 0.01369 0.24489

4] 0.70945 0.20463 0.16490

V6 0.38386 0.67422 0.05206

\'% 0.36685 0.22551 0.44896

V8 0.79515 0.14954 0.07298

V9 -0.05007 0.53258 0.44207

V10 0.19098 0.69763 0.19384

Vil 0.75254 0.13194 0.10449

V12 0.14175 0.76387 ~0.12740

Vi3 0.09284 0.34093 0.66540

Y ' Vi4 0.30740 0.21666 0.45041

noted that variables with higher loadings are to be considered as having greater influence. Also, theloading
of each factor and the correlation of the variables with the factors is known as factorial validity of the
variables. Factorial validity is essentially the correlation of the variables with whatever is common to a
group of variables. :

Table 3 .sho‘ws that the variables loading highly on Factor 1 are V4 (good gas mileage), V5 (good

handling), V8 (comfortable) and V11 (easy to drive). Thus, factor 1 might be interpreted as something
like ease of handling.

The second factor loads highly on V6 (modern looking), V9 (large engine), V10 (sleek appearance)
and V12 (eye catching). These describe the dimension of stylishness.



Finally, factor 3 isloading highly on V1 (low cost repairs), V2 (variety of colors), V3 (roomy interior),
V7 (high resale value), V13 (large trunk space) and V14 (easy to park). The last factor is associated with
cost efficiency. Thus, the car data maybe fairly characterized and attributed to these three factors: ease
of handling, stylishness and cost efficiency. Table 4 reveals the final three selected factors.

Table 4 showsthe communalities for the variables together with the percentage of’ variance accounted
for by each of the retained factors. Recall that in Table 1, about 53.7% of the total variance is accounted

for by the first three eigenvalues. Again, it appears safe to conclude that in terms of ¢ariance explained,
three factors sufficiently capture the variance structure of the original data.

Factor Scores

Table 4
Selected Factors

Final Statistics

Variable Communality * Factor Eigenvalue Pct. of Var. Cum. Pct.
V1 0.57988 * 1 473044 33.8 33.8
V2 0.47985 * 2 1.75275 12.8 46.3
V3 0.40236 * 3 1.03479 7.4 53.7
V4 0.66392 *
V5 0.57239 *
V6 0.60463 *
V7 0.38699 *
A% 0.65995 *
V9 0.48157 *
V10 0.56074 *
Vi1l 0.59396 *
V12 0.61982 *
Vi3 0.56762 *
V14 0.34430 *

Since one of the goals in factor analysis is to reduce a large number of variables to a smaller number
of factors, it is often desirable to estimate factor scores for each case. Recall that a factor can be estimated

as a linear combination of the original variables. Therefore, for case K, the score for the jth factor is
estimated as

i=l
where X, is the standardized value of the ith variable for case &, and W _ is the factor score coefficient for

Jjth fa}ctor and the ith variable. Except for principal components analfsis, exact factor scores cannot be
obtained. Estimates are obtained instead.




3. SOME PRACTICAL ISSUES

Issues that surface in real-life applications of Factor-Analysis are: (1) Choosmg the appropriate data
(variables) as input to the Factor Analysis module; (2) Interpretmg the underlying construct or dimension
(factor); and (3) What to do with cases that have missing values.

Choosing the appropriated data (variables) as input to a Factor Analysis
module

One of the criteria in choosing variables for the factor analysis model is that the variables must be
correlated with each other. If the correlations between variables are small, then it is possible that the
variables do not share common factors. In this case, the use of factor analysis model is inappropriate.
Bartlett’s test of Sphericity can be used to test the hypothesis that the correlation matrix is an identity
matrix(i.e., all diagonal terms are 1 and all off-diagonal terms are 0) or in other words, the variables are
uncorrelated. The test requires that the data be a sample from a multivariate normal population. If the
test statistic for sphericity (based on a chi-square transformation of the determinant of the correlation
matrix) s large and the corresponding significance level is small, thenit appears unlikely that the population
correlation matrix is an identity. This result would be appropriate for a factor analysis. However, if the
hypothesis that the population correlation matrix is an identity cannot be rejected because the observe
significance level is large, then one should reconsider the use of a factor model. Another indicator of the
strength of relationships among the variables is the Kaiser-Meyer-Olkin (KMO) measure of sampling
adequacy where the magnitudes of the correlation coefficients are bemg compared with the magnitudes
of the partial correlation coefficients. It is computed as

Zw Zr?
Z iz z)'U Z,,l i

KMO =

Table §

KMO and Bartlett's Test Results

Kaiser-Meyer-Olkin (KMO Measure of Sampling Adequacy = 0.8742

Bartlett's Test of Sphericity = 9437.0868 Significance = 0.0000

where r_ is the simple correlation coefficient between variables i and Jj and a is the partial correlation
coefficient between variables i and j. If the sum of the squared partial correlation coefficients between
all pairs of coefficients, the KMO measure is close to 1. Small values for the KMO measure indicate that
a factor analysis of the vanables may not be a good idea, since correlations between pairs of variables
cannot be explained by thé oiner vanabies. Kaiser (1 974) characterizes measures in the .90’s marvelous,
in the .80’s as meritorious, in the .70’s as average, in the .60’s as mediocre, in the .50’s as miserabie, and

below .50 as unacceptable Table 5 shows the KMO index of sampling adequacy and the Bartlett’s test
for th car data in this study.

Table 5 reveals that the overall KMO is close to 0.S and the Bartlett’s test is highly significant, so
it is safe to say that factor analysis is appropriate for the car data.



Interpreting Factors

A problem in interpreting the factors in deciding when a borderline loading should be considered
significant or salient. Using the salient loadings to cluster the variables may aid the interpretation.
“Salient” has been used on'an intuitive basis to identify high loading. More technically, a salient loading
is one that is sufficiently high to assume that a relationship exists between the variable and the factor. In
addition, it usually means that the relatronshrp is high enough so that the variable can aid in interpreting
the factor and vice versa. In some situations however, factors may occur that present problems for
interpretation. Such problems arise when the variables are not sufficiently understood, when the factor
includes such a wide range of variables that they cannot be readily integrated, or when the factor is poorly
defined. Poorly defined factors are generally\ those that do not have several salient loadmgs by variables
that load on specific factors. Without a unique set of variables loading the factor, there is no real basis
for interpreting the factor. Thereis, of course no reason to interpret all factors. It therefore follows that
only factors well defined by mterpretable variables are being examined.

Cases that have missing values

In cases where sonie individuals may have scores on all vanables except one or two, the following
may be suggested. the missing element can be replaced by calculating the mean for the vanable from the
individuals who do have scores onit. The mean is then used as the best estimate of the missing element.
Oranother individual canbe selected at random and his score on the variables is used to replace the missing
element. The latter procedure will, on the average, leave both the mean and variance unaffected. The

former procedure leaves only the mean unaﬂ’ected Both procedures reduce correlations with other
variables.

To maintain the variable’s correlations'with the other variables, a multiple regression analysis is used.
The other variables are used to predict the variable with a missing element. The regression analysis is
computed only with those individuals who have scores on all the variables to be used in the analysis. The
regressron weights are then applied to the known scores to estimate the missing score. A regression
analysis is computed for every variable that has one or more missing scores.

The regression procedure has been found more effective for estimating what the correlation matrix
would have been if all score had been available (Timm, 197 0)- The other procedures agamst which it was
compared included dropping the individuals who had a missing score, replacmg the missing score with

the mean, and a procedure based on principal components. The regression procedure was best whether
1% or 20% of the data were rmssmg (Gorsuch, 1983).

Computer programs are available that calculate each correlation coefﬂcrent from only the individuals
who have the necessary scores. The resulting correlation matrices should be factored only if the number
of individuals is quite similar for all elements. If the number of individuals varies widely form element to
element, the coefficients may be sufficiently incompatible to prevent a factor analysis or distort the results.
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